A NICHING PARTICLE SWARM OPTIMIZER R.Brits,
نویسندگان
چکیده
This paper describes a technique that extends the unimodal particle swarm optimizer to efficiently locate multiple optimal solutions in multimodal problems. Multiple subswarms are grown from an initial particle swarm by monitoring the fitness of individual particles. Experimental results show that the proposed algorithm can successfully locate all maxima on a small set of test functions during all simulation runs.
منابع مشابه
An Automatic Niching Particle Swarm for Multimodal Function Optimization
Niching is an important technique for mutlimodal optimization. This paper proposed an improved niching technique based on particle swarm optimizer to locate multiple optima. In the proposed algorithm, the algorithm inspired from natural ecosystem form niches automatically without any prespecified problem dependent parameters. Experiment results demonstrated that the proposed niching method is s...
متن کاملA Dynamic Archive Based Niching Particle Swarm Optimizer Using a Small Population Size
Many niching techniques have been proposed to solve multimodal optimization problems in the evolutionary computing community. However, these niching methods often depend on large population sizes to locate many more optima. This paper presents a particle swarm optimizer (PSO) niching algorithm only using a dynamic archive, without relying on a large population size to locate numerous optima. To...
متن کاملNiching for Dynamic Environments Using Particle Swarm Optimization
Adapting a niching algorithm for dynamic environments is described. The Vector-Based Particle Swarm Optimizer locates multiple optima by identifying niches and optimizing them in parallel. To track optima effectively, information from previous results should be utilized in order to find optima after an environment change, with less effort than complete re-optimization would entail. The Vector-B...
متن کاملA Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization
This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ ...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کامل